Some remarks on the inhomogeneous biharmonic NLS equation

نویسندگان

چکیده

We consider the inhomogeneous biharmonic nonlinear Schrödinger equation iut+?2u+?|x|?b|u|?u=0,where ?=±1 and ?, b>0. In subctritical case, we improve global well-posedness result obtained in Guzmán Pastor (2020) for dimensions N=5,6,7 Sobolev space H2(RN). The fundamental tools to establish our results are standard Strichartz estimates related linear problem Hardy-Littlewood inequality. Results concerning energy-critical that is, ?=8?2bN?4 also reported. More precisely, show a stability with initial data critical H?2.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some properties of solutions of the biharmonic equation

A 2p-times continuously differentiable complex-valued function f = u+ iv in a simply connected domainΩ ⊆ C is p-harmonic if f satisfies the p-harmonic equation ∆p f = 0. In this paper, we investigate the properties of p-harmonic mappings in the unit disk |z| < 1. First, we discuss the convexity, the starlikeness and the region of variability of some classes of p-harmonic mappings. Then we prove...

متن کامل

Integrable inhomogeneous NLS equations are equivalent to the standard NLS

A class of inhomogeneous nonlinear Schrödinger equations (NLS), claiming to be novel integrable systems with rich properties continues appearing in PhysRev and PRL. All such equations are shown to be not new but equivalent to the standard NLS, which trivially explains their integrability features. PACS no: 02.30.Ik , 04.20.Jb , 05.45.Yv , 02.30.Jr Time and again various forms of inhomogeneous n...

متن کامل

Some remarks on the arithmetic-geometric index

Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.

متن کامل

Remarks on biharmonic maps into spheres

We prove an apriori estimate in Morrey spaces for both intrinsic and extrinsic biharmonic maps into spheres. As applications, we prove an energy quantization theorem for biharmonic maps from 4-manifolds into spheres and a partial regularity for stationary intrinsic biharmonic maps into spheres. x

متن کامل

Some remarks on dipole showers and the DGLAP equation

In a recent paper Dokshitzer and Marchesini argue that parton showers based on colour dipoles conflict with collinear factorization and do not lead to the correct DGLAP equation. We show that their conclusion is a consequence of an inappropriate assumption they make, namely the choice of the gluon energy as evolution variable. We further show numerically that Monte Carlo programs based on dipol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-real World Applications

سال: 2022

ISSN: ['1878-5719', '1468-1218']

DOI: https://doi.org/10.1016/j.nonrwa.2022.103643